most of red-black insert done debugging it atm

This commit is contained in:
Pagwin 2024-11-23 19:25:26 -05:00
parent d8278a195a
commit 9a066ce16f
No known key found for this signature in database
GPG key ID: 81137023740CA260
2 changed files with 123 additions and 791 deletions

146
Map.hpp
View file

@ -35,23 +35,32 @@ template <typename Key_T, typename Mapped_T> class Map {
Color color; Color color;
Node *prev; Node *prev;
Node *next; Node *next;
Node(internal_ValueType val) Map *map;
Node(internal_ValueType val, Map *map)
: parent{nullptr}, val{val}, left{}, right{}, color{Color::Red}, : parent{nullptr}, val{val}, left{}, right{}, color{Color::Red},
prev{nullptr}, next{nullptr} {} prev{nullptr}, next{nullptr}, map{map} {}
Node(const Node &rhs) Node(const Node &rhs)
: parent{nullptr}, val{rhs.val}, : parent{nullptr}, val{rhs.val},
left{std::make_unique<Node>(*rhs.left)}, left{std::make_unique<Node>(*rhs.left)},
right{std::make_unique<Node>(*rhs.right)}, color{rhs.color}, right{std::make_unique<Node>(*rhs.right)}, color{rhs.color},
prev{nullptr}, next{nullptr} { prev{nullptr}, next{nullptr}, map{rhs.map} {
this->left->parent = this; if (this->left) {
this->right->parent = this; this->left->parent = this;
}
if (this->right) {
this->right->parent = this;
}
} }
Node(Node &&rhs) Node(Node &&rhs)
: parent{nullptr}, val{std::move(rhs.val)}, left{std::move(rhs.left)}, : parent{nullptr}, val{std::move(rhs.val)}, left{std::move(rhs.left)},
right{std::move(rhs.right)}, color{rhs.color}, prev{nullptr}, right{std::move(rhs.right)}, color{rhs.color}, prev{nullptr},
next{nullptr} { next{nullptr}, map{rhs.map} {
this->left->parent = this; if (this->left) {
this->right->parent = this; this->left->parent = this;
}
if (this->right) {
this->right->parent = this;
}
} }
Node &operator=(const Node &rhs) { Node &operator=(const Node &rhs) {
// retain parent as is, common case is the copy or move is happening due // retain parent as is, common case is the copy or move is happening due
@ -61,10 +70,16 @@ template <typename Key_T, typename Mapped_T> class Map {
this->left = std::make_unique<Node>(*rhs.left); this->left = std::make_unique<Node>(*rhs.left);
this->right = std::make_unique<Node>(*rhs.right); this->right = std::make_unique<Node>(*rhs.right);
this->left->parent = this; if (this->left) {
this->right->parent = this; this->left->parent = this;
this->left->restore_ordering(); this->left->restore_ordering();
this->right->restore_ordering(); }
if (this->right) {
this->right->parent = this;
this->right->restore_ordering();
}
this->map = rhs.map;
return *this; return *this;
} }
Node &operator=(Node &&rhs) { Node &operator=(Node &&rhs) {
@ -74,10 +89,15 @@ template <typename Key_T, typename Mapped_T> class Map {
this->val = rhs.val; this->val = rhs.val;
this->left = std::move(rhs.left); this->left = std::move(rhs.left);
this->right = std::move(rhs.right); this->right = std::move(rhs.right);
this->left->parent = this; if (this->left) {
this->right->parent = this; this->left->parent = this;
this->left->restore_ordering(); this->left->restore_ordering();
this->right->restore_ordering(); }
if (this->right) {
this->right->parent = this;
this->right->restore_ordering();
}
this->map = rhs.map;
return *this; return *this;
} }
Node *child(Direction dir) { Node *child(Direction dir) {
@ -150,8 +170,12 @@ template <typename Key_T, typename Mapped_T> class Map {
void restore_ordering() { void restore_ordering() {
this->prev = this->calc_pred(); this->prev = this->calc_pred();
this->next = this->calc_succ(); this->next = this->calc_succ();
this->prev->next = this; if (this->prev) {
this->next->prev = this; this->prev->next = this;
}
if (this->next) {
this->next->prev = this;
}
} }
Node *calc_pred() { Node *calc_pred() {
if (this->left) { if (this->left) {
@ -216,7 +240,67 @@ template <typename Key_T, typename Mapped_T> class Map {
this->parent->child(!dir)->set_child(dir, std::move(self)); this->parent->child(!dir)->set_child(dir, std::move(self));
} }
// TODO: // TODO:
void restore_red_black_insert() {} // Referencing
// https://en.wikipedia.org/wiki/Red%E2%80%93black_tree#Notes_to_the_insert_diagrams
void restore_red_black_insert(Direction dir) {
Node *self = this;
// infinite loop for case 2's sake, if tail recursion optimization was
// guaranteed I'd use tail recursion
while (true) {
Node *parent = self->parent;
// we're root, no-op (case 3)
if (!parent) {
return;
}
// if this is violated it's a bug
assert(parent->child(dir) == self);
// parent is black so no violation no-op (case 1)
if (parent->color == Color::Black) {
return;
}
Node *grandparent = parent->parent;
// parent is root (case 4)
if (!grandparent) {
parent->color = Color::Black;
return;
}
// table showing transforms on wikipedia doesn't have this so if it
// happens it's probably a bug
assert(grandparent->color == Color::Black);
Node *uncle = grandparent->child(!grandparent->which_child(parent));
if (uncle == nullptr || uncle->color == Color::Black) {
if (parent->which_child(self) != grandparent->which_child(parent)) {
// we're an inner child
// case 5
parent->rotate(dir);
self = parent;
parent = self->parent;
}
// case 6
if (grandparent->parent == nullptr) {
map->rotate_root(!dir);
} else {
grandparent->rotate(!dir);
}
parent->color = Color::Black;
grandparent->color = Color::Red;
return;
}
// case 2 (by process of elimination)
parent->color = Color::Black;
uncle->color = Color::Black;
grandparent->color = Color::Red;
self = grandparent;
}
}
// TODO: // TODO:
void restore_red_black_erase() {} void restore_red_black_erase() {}
}; };
@ -228,6 +312,7 @@ template <typename Key_T, typename Mapped_T> class Map {
Node *max; Node *max;
public: public:
friend Node;
// public type definitions // public type definitions
class Iterator { class Iterator {
Node *underlying; Node *underlying;
@ -255,6 +340,21 @@ public:
std::size_t size() { return this->_size; } std::size_t size() { return this->_size; }
private: private:
// private helpers
void rotate_root(Direction dir) {
assert(root.has_value());
std::unique_ptr<Node> new_root = root.value().uchild(!dir);
// can't make null the new root
assert(new_root);
std::unique_ptr<Node> old_root =
std::make_unique<Node>(std::move(root.value()));
root.value() = std::move(*new_root);
root.value().set_child(dir, std::move(old_root));
}
template <bool trace = false> template <bool trace = false>
std::pair<Node *, Direction> locate(const Key_T &key) { std::pair<Node *, Direction> locate(const Key_T &key) {
Node *ret_parent; Node *ret_parent;
@ -349,21 +449,21 @@ public:
if (this->root.has_value()) { if (this->root.has_value()) {
return std::make_pair(Iterator{&root.value()}, false); return std::make_pair(Iterator{&root.value()}, false);
} else { } else {
this->root = Node{val}; this->root = Node{val, this};
return std::make_pair(Iterator{&root.value()}, true); return std::make_pair(Iterator{&root.value()}, true);
} }
} }
// non-root node // non-root node
if (!parent->child(dir)) { if (parent->child(dir)) {
// node already present // node already present
return std::make_pair(Iterator{parent->child(dir)}, false); return std::make_pair(Iterator{parent->child(dir)}, false);
} }
// need to insert non-root node // need to insert non-root node
Node *new_node = Node *new_node =
parent->set_child(dir, std::make_unique<Node>(Node{val})).get(); parent->set_child(dir, std::make_unique<Node>(Node{val, this})).get();
new_node->restore_red_black_insert(); new_node->restore_red_black_insert(dir);
new_node->restore_ordering(); new_node->restore_ordering();
return std::make_pair(Iterator{new_node}, true); return std::make_pair(Iterator{new_node}, true);
} }

View file

@ -1,768 +0,0 @@
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <initializer_list>
#include <optional>
#include <stdexcept>
#include <utility>
#include <vector>
// everything is super interconnected so some forward declarations are needed at
// various points
namespace cs440 {
template <typename Key_T, typename Mapped_T> class Map;
namespace {
enum class Color { Red, Black };
enum class Direction { Left, Right };
Direction operator!(Direction dir) {
switch (dir) {
case Direction::Left:
return Direction::Right;
case Direction::Right:
return Direction::Left;
default:
// unreachable the only directions are left and right
assert(false);
}
}
template <typename Key_T, typename Mapped_T> struct BookKeeping {
using Self = BookKeeping<Key_T, Mapped_T>;
using ValueType = std::pair<Key_T, Mapped_T>;
using Ptr = typename std::vector<Self>::iterator;
friend class Map<Key_T, Mapped_T>;
Map<Key_T, Mapped_T> &container;
ValueType value;
// Ptr self;
Color color;
// nullptr indicates empty
std::optional<std::size_t> parent;
std::optional<std::size_t> left;
std::optional<std::size_t> right;
std::optional<std::size_t> prev;
std::optional<std::size_t> next;
BookKeeping(Map<Key_T, Mapped_T> &container) : container{container} {}
BookKeeping(BookKeeping const &rhs)
: container{rhs.container}, value{rhs.value}, // self{rhs.self},
color{rhs.color}, parent{rhs.parent}, left{rhs.left}, right{rhs.right},
prev{rhs.prev}, next{rhs.next} {}
// if pointing to different containers throws
BookKeeping &operator=(BookKeeping const &rhs) {
if (&this->container != &rhs.container) {
throw std::invalid_argument{"can only reassign Bookkeeping "
"values/iterators from the same map object"};
}
this->value = rhs.value;
// this->self = rhs.self;
this->color = rhs.color;
this->parent = rhs.parent;
this->left = rhs.left;
this->right = rhs.right;
this->prev = rhs.prev;
this->next = rhs.next;
return *this;
}
// reference to a pointer because the alternatives were worse
inline Self *child(Direction dir) {
auto ret = c_select(dir);
return ret.has_value() ? &container.nodes[ret.value()] : nullptr;
}
inline std::optional<std::size_t> c_select(Direction dir) {
switch (dir) {
case Direction::Left:
return left;
break;
case Direction::Right:
return right;
break;
default:
assert(false);
}
}
inline void c_trans(Direction dir, Self *v) {
switch (dir) {
case Direction::Left:
this->set_l(v);
break;
case Direction::Right:
this->set_r(v);
break;
default:
assert(false);
}
}
inline Self *n() {
return next.has_value() ? &container.nodes[next.value()] : nullptr;
}
inline void set_n(Self *ptr) {
this->next = ptr == nullptr
? std::nullopt
: std::optional<std::size_t>{static_cast<std::size_t>(
ptr - &this->container.nodes[0])};
}
inline Self *p() {
return prev.has_value() ? &container.nodes[prev.value()] : nullptr;
}
inline void set_p(Self *ptr) {
this->prev = ptr == nullptr
? std::nullopt
: std::optional<std::size_t>{static_cast<std::size_t>(
ptr - &this->container.nodes[0])};
}
inline Self *r() {
return right.has_value() ? &container.nodes[right.value()] : nullptr;
}
inline void set_r(Self *ptr) {
this->right = ptr == nullptr
? std::nullopt
: std::optional<std::size_t>{static_cast<std::size_t>(
ptr - &this->container.nodes[0])};
}
inline Self *l() {
return left.has_value() ? &container.nodes[left.value()] : nullptr;
}
inline void set_l(Self *ptr) {
this->left = ptr == nullptr
? std::nullopt
: std::optional<std::size_t>{static_cast<std::size_t>(
ptr - &this->container.nodes[0])};
}
inline Self *par() {
return parent.has_value() ? &container.nodes[parent.value()] : nullptr;
}
inline void set_par(Self *ptr) {
this->parent = ptr == nullptr
? std::nullopt
: std::optional<std::size_t>{static_cast<std::size_t>(
ptr - &this->container.nodes[0])};
}
// this is root/P for this method
// copying from wikipedia RotateDirRoot with translation into my own idioms
// https://en.wikipedia.org/wiki/Red%E2%80%93black_tree#Operations
inline void rotate(Direction dir) {
// wikipedia version uses alphabet soup, might fix later
Self *P = this;
auto &T = container;
Self *G = P->par();
Self *S = P->child(!dir);
Self *C;
// this tidbit is wrong and wikipedia is wrong to have this assert it seems
// this method shouldn't be called in cases where this assert will trip
// assert(S != nullptr);
C = S->child(dir);
P->c_trans(!dir, C);
if (C != nullptr) {
C->set_par(P);
}
S->c_trans(dir, P);
P->set_par(S);
S->set_par(G);
if (G != nullptr) {
if (P == G->r()) {
G->set_r(S);
} else {
G->set_l(S);
}
} else {
T.root = S - &T.nodes[0];
}
}
};
} // namespace
// https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
template <typename Key_T, typename Mapped_T> class Map {
private:
using ValueType = std::pair<Key_T, Mapped_T>;
using Node = BookKeeping<Key_T, Mapped_T>;
using Map_T = Map<Key_T, Mapped_T>;
public:
class Iterator;
class ConstIterator;
class ReverseIterator;
friend class Iterator;
friend class ConstIterator;
friend class ReverseIterator;
friend Node;
class Iterator {
friend Map_T;
friend Node;
private:
using Ref_T = std::optional<std::size_t>;
Map<Key_T, Mapped_T> &parent;
Ref_T ref;
Ref_T escape;
Iterator(Map<Key_T, Mapped_T> &parent, Ref_T ref,
Ref_T escape = std::nullopt)
: parent{parent}, ref{ref}, escape{escape} {}
public:
Iterator() = delete;
Iterator &operator++() {
if (ref == std::nullopt) {
ref = escape;
return *this;
}
if (parent.nodes[ref.value()].next == std::nullopt) {
escape = ref;
}
ref = parent.nodes[ref.value()].next;
return *this;
}
Iterator operator++(int) {
Iterator tmp = *this;
++(*this);
return tmp;
}
Iterator &operator--() {
if (ref == std::nullopt) {
ref = escape;
return *this;
}
if (parent.nodes[ref.value()].prev == std::nullopt) {
escape = ref;
}
ref = parent.nodes[ref.value()].prev;
return *this;
}
Iterator operator--(int) {
Iterator tmp = *this;
--(*this);
return tmp;
}
ValueType &operator*() const {
return this->parent.nodes[this->ref.value()].value;
}
ValueType *operator->() const { return &this->operator*(); }
friend bool operator==(Iterator const &lhs, Iterator const &rhs) {
return lhs.ref == rhs.ref;
}
friend bool operator!=(Iterator const &lhs, Iterator const &rhs) {
return lhs.ref != rhs.ref;
}
friend bool operator==(ConstIterator const &lhs, Iterator const &rhs) {
return lhs.store_iter.ref == rhs.ref;
}
friend bool operator!=(ConstIterator const &lhs, Iterator const &rhs) {
return lhs.store_iter.ref != rhs.ref;
}
friend bool operator==(Iterator const &lhs, ConstIterator const &rhs) {
return lhs.ref == rhs.store_iter.ref;
}
friend bool operator!=(Iterator const &lhs, ConstIterator const &rhs) {
return lhs.ref != rhs.store_iter.ref;
}
};
class ConstIterator {
public:
friend class Map<Key_T, Mapped_T>;
friend class Iterator;
using underlying = Iterator;
private:
underlying store_iter;
ConstIterator(underlying iter) : store_iter{iter} {}
public:
ConstIterator() = delete;
friend bool operator==(ConstIterator const &lhs, ConstIterator const &rhs) {
return lhs.store_iter == rhs.store_iter;
}
ConstIterator &operator++() {
++this->store_iter;
return *this;
}
ConstIterator operator++(int) {
ConstIterator tmp = *this;
this->store_iter++;
return tmp;
}
ConstIterator &operator--() {
--this->store_iter;
return *this;
}
ConstIterator operator--(int) {
ConstIterator tmp = *this;
this->store_iter--;
return tmp;
}
const ValueType &operator*() const { return *this->store_iter; }
const ValueType *operator->() const {
return this->store_iter.operator->();
}
friend bool operator!=(ConstIterator const &lhs, ConstIterator const &rhs) {
return lhs.store_iter != rhs.store_iter;
}
};
class ReverseIterator {
public:
friend class Map<Key_T, Mapped_T>;
friend class Iterator;
using underlying = Iterator;
private:
underlying store_iter;
public:
ReverseIterator() = delete;
ReverseIterator(underlying store_iter) : store_iter{store_iter} {}
ReverseIterator &operator++() {
--store_iter;
return *this;
}
ReverseIterator operator++(int) {
ReverseIterator ret = *this;
++(*this);
return ret;
}
ReverseIterator &operator--() {
++store_iter;
return *this;
}
ReverseIterator operator--(int) {
ReverseIterator ret = *this;
--(*this);
return ret;
}
ValueType &operator*() const { return this->store_iter.ref->value; }
ValueType *operator->() const { return &this->store_iter.ref->value; }
friend bool operator==(ReverseIterator const &lhs,
ReverseIterator const &rhs) {
return lhs.store_iter == rhs.store_iter;
}
friend bool operator!=(ConstIterator const &lhs, ConstIterator const &rhs) {
return lhs.store_iter != rhs.store_iter;
}
};
private:
std::optional<std::size_t> root;
std::optional<std::size_t> min;
std::optional<std::size_t> max;
std::vector<Node> nodes;
std::size_t size_diff;
std::optional<std::size_t> pred(std::size_t node) {
if (this->nodes[node].left.has_value()) {
std::size_t store = this->nodes[node].left.value();
while (this->nodes[store].right.has_value()) {
store = this->nodes[node].right.value();
}
return store;
} else {
if (!this->nodes[node].parent.has_value()) {
return std::nullopt;
}
std::size_t prev_store = node;
std::size_t store = this->nodes[node].parent.value();
while (this->nodes[store].parent.has_value()) {
if (this->nodes[store].right == prev_store) {
return store;
}
prev_store = store;
store = this->nodes[store].parent.value();
}
return std::nullopt;
}
}
std::optional<std::size_t> succ(std::size_t node) {
if (this->nodes[node].right.has_value()) {
std::size_t store = this->nodes[node].right.value();
while (this->nodes[store].left.has_value()) {
store = this->nodes[node].left.value();
}
return store;
} else {
if (!this->nodes[node].parent.has_value()) {
return std::nullopt;
}
std::size_t prev_store = node;
std::size_t store = this->nodes[prev_store].parent.value();
while (this->nodes[store].parent.has_value()) {
if (this->nodes[store].left == prev_store) {
return store;
}
prev_store = store;
store = this->nodes[store].parent.value();
}
return std::nullopt;
}
}
public:
Map()
: root{std::nullopt}, min{std::nullopt}, max{std::nullopt}, nodes{},
size_diff{0} {}
Map(const Map &rhs)
: root{rhs.root}, min{rhs.min}, max{rhs.max}, nodes{rhs.nodes},
size_diff{0} {}
Map &operator=(const Map &rhs) {
this->root = rhs.root;
this->min = rhs.min;
this->max = rhs.max;
this->nodes = rhs.nodes;
}
Map(std::initializer_list<ValueType> elems)
: root{std::nullopt}, min{std::nullopt}, max{std::nullopt}, nodes{} {
this->insert(elems.begin(), elems.end());
}
~Map() {}
size_t size() const { return this->nodes.size() - this->size_diff; }
bool empty() const { return this->size() == 0; }
Iterator begin() { return Iterator{*this, min}; }
Iterator end() { return Iterator{*this, std::nullopt, max}; }
ConstIterator begin() const { return ConstIterator{*this, this->begin()}; }
ConstIterator end() const { return ConstIterator{*this, this->end()}; }
ConstIterator cbegin() const { return this->begin(); }
ConstIterator cend() const { return this->end(); }
ReverseIterator rbegin() {
return ReverseIterator{Iterator{*this, this->max}};
}
ReverseIterator rend() {
return ReverseIterator{Iterator{*this, nullptr, min}};
}
Iterator find(const Key_T &key) {
// we need a locate slot function for insert regardless so might as well use
// it here
auto [parent, dir] = this->locate_slot(key);
if (!parent.has_value()) {
if (this->root.has_value() &&
this->nodes[this->root.value()].value.first == key) {
return Iterator{*this, root};
} else {
return this->end();
}
}
if (!this->nodes[parent.value()].c_select(dir).has_value()) {
return this->end();
}
return Iterator{*this, this->nodes[parent.value()].c_select(dir)};
}
// implicit cast to ConstIterator from Iterator
ConstIterator find(const Key_T &key) const { return this->find(key); }
Mapped_T &at(const Key_T &key) {
auto ret = this->find(key);
if (ret == this->end()) {
throw std::out_of_range{"Key not in map"};
}
return ret->second;
}
const Mapped_T &at(const Key_T &key) const {
auto ret = this->find(key);
if (ret == this->end()) {
throw std::out_of_range{"Key not in map"};
}
return ret->second;
}
Mapped_T &operator[](const Key_T &key) {
Mapped_T v;
auto insert_val = std::make_pair(key, v);
auto [iter, key_no_exist] = this->insert(insert_val);
return iter->second;
}
private:
void handle_root_rotation(std::optional<std::size_t> g,
std::optional<std::size_t> p,
std::optional<std::size_t> i, Direction dir) {
handle_root_rotation(g.has_value() ? &this->nodes[g.value()] : nullptr,
p.has_value() ? &this->nodes[p.value()] : nullptr,
i.has_value() ? &this->nodes[i.value()] : nullptr,
dir);
}
void handle_root_rotation(Node *grandparent, Node *parent, Node *inserting,
Direction dir) {
// making inner grandchild into outer grandchild
if (inserting == parent->child(!dir)) {
parent->rotate(dir);
inserting = parent;
parent = grandparent->child(dir);
}
grandparent->rotate(!dir);
parent->color = Color::Black;
grandparent->color = Color::Red;
}
using Ref_T = std::optional<std::size_t>;
// heavily referencing the wikipedia implementation for this
// https://en.wikipedia.org/wiki/Red%E2%80%93black_tree#Insertion
void insert_helper(Ref_T to_insert, Ref_T parent, Direction dir) {
// initialize the element we're inserting
this->nodes[to_insert.value()].color = Color::Red;
this->nodes[to_insert.value()].left = std::nullopt;
this->nodes[to_insert.value()].right = std::nullopt;
this->nodes[to_insert.value()].next = std::nullopt;
this->nodes[to_insert.value()].prev = std::nullopt;
this->nodes[to_insert.value()].parent = parent;
// if this is the first element to be inserted it's root
if (!this->nodes[to_insert.value()].parent.has_value()) {
this->root = to_insert;
this->nodes[to_insert.value()].color = Color::Black;
return;
}
switch (dir) {
case Direction::Left:
this->nodes[parent.value()].left = to_insert;
break;
case Direction::Right:
this->nodes[parent.value()].right = to_insert;
break;
}
do {
// don't need to keep track of these in between loops they get
// recalculated
std::optional<std::size_t> grandparent;
std::optional<std::size_t> uncle;
if (this->nodes[parent.value()].color == Color::Black) {
// black parent means invariants definitely hold
return;
}
grandparent = this->nodes[parent.value()].parent;
if (!grandparent.has_value()) {
// parent is root, just need to recolor it to black
this->nodes[parent.value()].color = Color::Black;
return;
}
Direction parent_direction;
if (this->nodes[grandparent.value()].left == parent) {
parent_direction = Direction::Left;
uncle = this->nodes[grandparent.value()].right;
} else {
parent_direction = Direction::Right;
uncle = this->nodes[grandparent.value()].left;
}
if (!uncle.has_value() ||
this->nodes[uncle.value()].color == Color::Black) {
if (to_insert == this->nodes[parent.value()].c_select(!dir)) {
// case 5
this->nodes[parent.value()].rotate(dir);
to_insert = parent;
parent = this->nodes[grandparent.value()].c_select(dir);
}
// case 6
this->handle_root_rotation(grandparent, parent, to_insert,
parent_direction);
return;
}
// now we know parent and uncle are both red so red-black coloring can be
// pushed down from grandparent
this->nodes[parent.value()].color = Color::Black;
this->nodes[uncle.value()].color = Color::Black;
this->nodes[grandparent.value()].color = Color::Red;
to_insert = grandparent;
parent = this->nodes[to_insert.value()].parent;
} while (parent.has_value());
// case 3: current node is red root so we're done
}
// returns nullptr iff map is empty
std::pair<std::optional<std::size_t>, Direction>
locate_slot(const Key_T &key) {
using Ref_T = std::optional<std::size_t>;
Ref_T current = this->root;
Ref_T parent = std::nullopt;
Direction dir;
while (current.has_value() &&
this->nodes[current.value()].value.first != key) {
parent = current;
if (key < this->nodes[current.value()].value.first) {
dir = Direction::Left;
current = this->nodes[current.value()].left;
} else {
dir = Direction::Right;
current = this->nodes[current.value()].right;
}
}
return std::make_pair(parent, dir);
}
public:
// If the key does not already exist in the map, it returns an iterator
// pointing to the new element, and true. If the key already exists, no
// insertion is performed nor is the mapped object changed, and it returns
// an iterator pointing to the element with the same key, and false.
std::pair<Iterator, bool> insert(const ValueType &val) {
auto [parent, dir] = locate_slot(val.first);
bool ret = !parent.has_value() ||
!this->nodes[parent.value()].c_select(dir).has_value();
if (!ret) {
return std::make_pair(
Iterator{*this, this->nodes[parent.value()].c_select(dir)}, ret);
}
Node to_insert{*this};
to_insert.value = val;
this->nodes.push_back(std::move(to_insert));
// this->nodes.back().self = (--this->nodes.end());
insert_helper(nodes.size() - 1, parent, dir);
if (min == std::nullopt ||
val.first < this->nodes[min.value()].value.first) {
min = nodes.size() - 1;
}
if (max == std::nullopt ||
val.first > this->nodes[max.value()].value.first) {
max = nodes.size() - 1;
}
Ref_T successor = this->succ(this->nodes.size() - 1);
Ref_T predessor = this->pred(this->nodes.size() - 1);
if (successor.has_value()) {
this->nodes[successor.value()].prev = this->nodes.size() - 1;
}
this->nodes[this->nodes.size() - 1].next = successor;
if (predessor.has_value()) {
this->nodes[predessor.value()].next = this->nodes.size() - 1;
}
this->nodes[this->nodes.size() - 1].prev = successor;
return std::make_pair(Iterator(*this, nodes.size() - 1), ret);
}
template <typename IT_T> void insert(IT_T range_beg, IT_T range_end) {
std::for_each(range_beg, range_end,
[&](ValueType &val) { this->insert(val); });
}
private:
void case5(Node *parent, Node *sibling, Node *close_nephew,
Node *distant_nephew, Direction dir) {
sibling->rotate(!dir);
sibling->color = Color::Red;
close_nephew->color = Color::Black;
distant_nephew = sibling;
sibling = close_nephew;
case6(parent, sibling, distant_nephew, dir);
}
void case6(Node *parent, Node *sibling, Node *distant_nephew, Direction dir) {
parent->rotate(dir);
sibling->color = parent->color;
parent->color = Color::Black;
distant_nephew->color = Color::Black;
}
// black leaf node with no kids
void complex_erase(Iterator pos) {}
public:
void erase(Iterator pos) {
this->size_diff++;
// simple cases
Node *ref = &this->nodes[pos.ref.value()];
if (ref ==
(this->min.has_value() ? &this->nodes[this->min.value()] : nullptr)) {
this->min = ref->next;
}
if (ref ==
(this->max.has_value() ? &this->nodes[this->max.value()] : nullptr)) {
this->max = ref->prev;
}
// 2 children
if (ref->l() != nullptr && ref->r() != nullptr) {
Ref_T next = ref->next;
*ref = this->nodes[next.value()];
this->erase(Iterator{*this, next});
}
// single child which is left
else if (ref->l() != nullptr && ref->r() == nullptr) {
if (ref->par()->l() == ref) {
ref->par()->set_l(ref->l());
} else {
ref->par()->set_r(ref->l());
}
if (ref->color == Color::Black) {
ref->l()->color = Color::Black;
}
}
// single child which is right
else if (ref->l() == nullptr && ref->r() != nullptr) {
if (ref->par()->l() == ref) {
ref->par()->set_l(ref->r());
} else {
ref->par()->set_r(ref->r());
}
if (ref->color == Color::Black) {
ref->r()->color = Color::Black;
}
}
// no children and root
else if (this->root == pos.ref && ref->l() == nullptr &&
ref->r() == nullptr) {
this->root = std::nullopt;
}
// no children and red
else if (ref->color == Color::Red && ref->l() == nullptr &&
ref->r() == nullptr) {
if (ref->parent.has_value()) {
if (this->nodes[ref->parent.value()].right == pos.ref.value()) {
this->nodes[ref->parent.value()].right = std::nullopt;
} else {
this->nodes[ref->parent.value()].left = std::nullopt;
}
}
}
// complicated case of black node with no kids
else {
this->complex_erase(pos);
}
if (ref->next.has_value()) {
this->nodes[ref->next.value()].prev = this->pred(ref->next.value());
}
if (ref->prev.has_value()) {
this->nodes[ref->next.value()].next = this->succ(ref->next.value());
}
}
void erase(const Key_T &key) { this->erase(this->find(key)); }
void clear() {
this->root = std::nullopt;
this->nodes.clear();
}
friend bool operator==(const Map &lhs, const Map &rhs) {
if (lhs.nodes.size() != rhs.nodes.size()) {
return false;
}
auto liter = lhs.cbegin();
auto riter = rhs.cbegin();
// both must be the same length so this is fine
while (liter != lhs.cend()) {
if (*liter != *riter) {
return false;
}
liter++;
riter++;
}
return true;
}
friend bool operator!=(const Map &lhs, const Map &rhs) {
return !(lhs == rhs);
}
friend bool operator<(const Map &lhs, const Map &rhs) {
auto l_iter = lhs.cbegin();
auto r_iter = rhs.cbegin();
for (; l_iter != lhs.cend() && r_iter != rhs.cend(); l_iter++, r_iter++) {
if (*l_iter < *r_iter) {
return true;
}
}
return lhs.size() < rhs.size();
}
};
} // namespace cs440