838 lines
26 KiB
C++
838 lines
26 KiB
C++
// commenting everything out when I commit so all commits my code technically
|
|
// compiles
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <initializer_list>
|
|
#include <optional>
|
|
#include <stdexcept>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
// everything is super interconnected so some forward declarations are needed at
|
|
// various points
|
|
namespace cs440 {
|
|
|
|
template <typename Key_T, typename Mapped_T> class Map;
|
|
|
|
namespace {
|
|
enum class Color { Red, Black };
|
|
enum class Direction { Left, Right };
|
|
Direction operator!(Direction dir) {
|
|
switch (dir) {
|
|
case Direction::Left:
|
|
return Direction::Right;
|
|
case Direction::Right:
|
|
return Direction::Left;
|
|
default:
|
|
// unreachable the only directions are left and right
|
|
assert(false);
|
|
}
|
|
}
|
|
template <typename Key_T, typename Mapped_T> struct BookKeeping {
|
|
using Self = BookKeeping<Key_T, Mapped_T>;
|
|
using ValueType = std::pair<Key_T, Mapped_T>;
|
|
using Ptr = typename std::vector<Self>::iterator;
|
|
friend class Map<Key_T, Mapped_T>;
|
|
Map<Key_T, Mapped_T> &container;
|
|
ValueType value;
|
|
// Ptr self;
|
|
Color color;
|
|
// nullptr indicates empty
|
|
std::optional<std::size_t> parent;
|
|
std::optional<std::size_t> left;
|
|
std::optional<std::size_t> right;
|
|
std::optional<std::size_t> prev;
|
|
std::optional<std::size_t> next;
|
|
BookKeeping(Map<Key_T, Mapped_T> &container) : container{container} {}
|
|
BookKeeping(BookKeeping const &rhs)
|
|
: container{rhs.container}, value{rhs.value}, // self{rhs.self},
|
|
color{rhs.color}, parent{rhs.parent}, left{rhs.left}, right{rhs.right},
|
|
prev{rhs.prev}, next{rhs.next} {}
|
|
// if pointing to different containers throws
|
|
BookKeeping &operator=(BookKeeping const &rhs) {
|
|
if (&this->container != &rhs.container) {
|
|
throw std::invalid_argument{"can only reassign Bookkeeping "
|
|
"values/iterators from the same map object"};
|
|
}
|
|
this->value = rhs.value;
|
|
// this->self = rhs.self;
|
|
this->color = rhs.color;
|
|
this->parent = rhs.parent;
|
|
this->left = rhs.left;
|
|
this->right = rhs.right;
|
|
this->prev = rhs.prev;
|
|
this->next = rhs.next;
|
|
return *this;
|
|
}
|
|
// reference to a pointer because the alternatives were worse
|
|
inline Self *child(Direction dir) {
|
|
auto ret = c_select(dir);
|
|
return ret.has_value() ? &container.nodes[ret.value()] : nullptr;
|
|
}
|
|
inline std::optional<std::size_t> c_select(Direction dir) {
|
|
switch (dir) {
|
|
case Direction::Left:
|
|
return left;
|
|
break;
|
|
case Direction::Right:
|
|
return right;
|
|
break;
|
|
default:
|
|
assert(false);
|
|
}
|
|
}
|
|
inline void c_trans(Direction dir, Self *v) {
|
|
switch (dir) {
|
|
case Direction::Left:
|
|
this->set_l(v);
|
|
break;
|
|
case Direction::Right:
|
|
this->set_r(v);
|
|
break;
|
|
default:
|
|
assert(false);
|
|
}
|
|
}
|
|
|
|
inline Self *n() {
|
|
return next.has_value() ? &container.nodes[next.value()] : nullptr;
|
|
}
|
|
inline void set_n(Self *ptr) {
|
|
this->next = ptr == nullptr
|
|
? std::nullopt
|
|
: std::optional<std::size_t>{static_cast<std::size_t>(
|
|
ptr - &this->container.nodes[0])};
|
|
}
|
|
inline Self *p() {
|
|
return prev.has_value() ? &container.nodes[prev.value()] : nullptr;
|
|
}
|
|
inline void set_p(Self *ptr) {
|
|
this->prev = ptr == nullptr
|
|
? std::nullopt
|
|
: std::optional<std::size_t>{static_cast<std::size_t>(
|
|
ptr - &this->container.nodes[0])};
|
|
}
|
|
inline Self *r() {
|
|
return right.has_value() ? &container.nodes[right.value()] : nullptr;
|
|
}
|
|
inline void set_r(Self *ptr) {
|
|
this->right = ptr == nullptr
|
|
? std::nullopt
|
|
: std::optional<std::size_t>{static_cast<std::size_t>(
|
|
ptr - &this->container.nodes[0])};
|
|
}
|
|
inline Self *l() {
|
|
return left.has_value() ? &container.nodes[left.value()] : nullptr;
|
|
}
|
|
inline void set_l(Self *ptr) {
|
|
this->left = ptr == nullptr
|
|
? std::nullopt
|
|
: std::optional<std::size_t>{static_cast<std::size_t>(
|
|
ptr - &this->container.nodes[0])};
|
|
}
|
|
inline Self *par() {
|
|
return parent.has_value() ? &container.nodes[parent.value()] : nullptr;
|
|
}
|
|
inline void set_par(Self *ptr) {
|
|
this->parent = ptr == nullptr
|
|
? std::nullopt
|
|
: std::optional<std::size_t>{static_cast<std::size_t>(
|
|
ptr - &this->container.nodes[0])};
|
|
}
|
|
// this is root/P for this method
|
|
// copying from wikipedia RotateDirRoot with translation into my own idioms
|
|
// https://en.wikipedia.org/wiki/Red%E2%80%93black_tree#Operations
|
|
inline void rotate(Direction dir) {
|
|
// wikipedia version uses alphabet soup, might fix later
|
|
Self *P = this;
|
|
auto &T = container;
|
|
Self *G = P->par();
|
|
Self *S = P->child(!dir);
|
|
Self *C;
|
|
|
|
// this tidbit is wrong and wikipedia is wrong to have this assert it seems
|
|
// this method shouldn't be called in cases where this assert will trip
|
|
// assert(S != nullptr);
|
|
|
|
C = S->child(dir);
|
|
P->c_trans(!dir, C);
|
|
|
|
if (C != nullptr) {
|
|
C->set_par(P);
|
|
}
|
|
S->c_trans(dir, P);
|
|
P->set_par(S);
|
|
S->set_par(G);
|
|
if (G != nullptr) {
|
|
if (P == G->r()) {
|
|
G->set_r(S);
|
|
} else {
|
|
G->set_l(S);
|
|
}
|
|
} else {
|
|
T.root = S - &T.nodes[0];
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
// https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
|
|
template <typename Key_T, typename Mapped_T> class Map {
|
|
private:
|
|
using ValueType = std::pair<Key_T, Mapped_T>;
|
|
using Node = BookKeeping<Key_T, Mapped_T>;
|
|
using Map_T = Map<Key_T, Mapped_T>;
|
|
|
|
public:
|
|
class Iterator;
|
|
class ConstIterator;
|
|
class ReverseIterator;
|
|
|
|
friend class Iterator;
|
|
friend class ConstIterator;
|
|
friend class ReverseIterator;
|
|
friend Node;
|
|
class Iterator {
|
|
friend Map_T;
|
|
friend Node;
|
|
|
|
private:
|
|
using Ref_T = std::optional<std::size_t>;
|
|
Map<Key_T, Mapped_T> &parent;
|
|
Ref_T ref;
|
|
Ref_T escape;
|
|
Iterator(Map<Key_T, Mapped_T> &parent, Ref_T ref,
|
|
Ref_T escape = std::nullopt)
|
|
: parent{parent}, ref{ref}, escape{escape} {}
|
|
|
|
public:
|
|
Iterator() = delete;
|
|
Iterator &operator++() {
|
|
if (ref == std::nullopt) {
|
|
ref = escape;
|
|
return *this;
|
|
}
|
|
if (parent.nodes[ref.value()].next == std::nullopt) {
|
|
escape = ref;
|
|
}
|
|
ref = parent.nodes[ref.value()].next;
|
|
return *this;
|
|
}
|
|
Iterator operator++(int) {
|
|
Iterator tmp = *this;
|
|
++(*this);
|
|
return tmp;
|
|
}
|
|
Iterator &operator--() {
|
|
if (ref == std::nullopt) {
|
|
ref = escape;
|
|
return *this;
|
|
}
|
|
if (parent.nodes[ref.value()].prev == std::nullopt) {
|
|
escape = ref;
|
|
}
|
|
ref = parent.nodes[ref.value()].prev;
|
|
return *this;
|
|
}
|
|
Iterator operator--(int) {
|
|
Iterator tmp = *this;
|
|
--(*this);
|
|
return tmp;
|
|
}
|
|
ValueType &operator*() const {
|
|
return this->parent.nodes[this->ref.value()].value;
|
|
}
|
|
ValueType *operator->() const { return &this->operator*(); }
|
|
friend bool operator==(Iterator const &lhs, Iterator const &rhs) {
|
|
return lhs.ref == rhs.ref;
|
|
}
|
|
friend bool operator!=(Iterator const &lhs, Iterator const &rhs) {
|
|
return lhs.ref != rhs.ref;
|
|
}
|
|
friend bool operator==(ConstIterator const &lhs, Iterator const &rhs) {
|
|
return lhs.store_iter.ref == rhs.ref;
|
|
}
|
|
friend bool operator!=(ConstIterator const &lhs, Iterator const &rhs) {
|
|
return lhs.store_iter.ref != rhs.ref;
|
|
}
|
|
friend bool operator==(Iterator const &lhs, ConstIterator const &rhs) {
|
|
return lhs.ref == rhs.store_iter.ref;
|
|
}
|
|
friend bool operator!=(Iterator const &lhs, ConstIterator const &rhs) {
|
|
return lhs.ref != rhs.store_iter.ref;
|
|
}
|
|
};
|
|
class ConstIterator {
|
|
public:
|
|
friend class Map<Key_T, Mapped_T>;
|
|
friend class Iterator;
|
|
using underlying = Iterator;
|
|
|
|
private:
|
|
underlying store_iter;
|
|
ConstIterator(underlying iter) : store_iter{iter} {}
|
|
|
|
public:
|
|
ConstIterator() = delete;
|
|
friend bool operator==(ConstIterator const &lhs, ConstIterator const &rhs) {
|
|
return lhs.store_iter == rhs.store_iter;
|
|
}
|
|
ConstIterator &operator++() {
|
|
++this->store_iter;
|
|
return *this;
|
|
}
|
|
ConstIterator operator++(int) {
|
|
ConstIterator tmp = *this;
|
|
this->store_iter++;
|
|
return tmp;
|
|
}
|
|
ConstIterator &operator--() {
|
|
--this->store_iter;
|
|
return *this;
|
|
}
|
|
ConstIterator operator--(int) {
|
|
ConstIterator tmp = *this;
|
|
this->store_iter--;
|
|
return tmp;
|
|
}
|
|
const ValueType &operator*() const { return *this->store_iter; }
|
|
const ValueType *operator->() const {
|
|
return this->store_iter.operator->();
|
|
}
|
|
friend bool operator!=(ConstIterator const &lhs, ConstIterator const &rhs) {
|
|
return lhs.store_iter != rhs.store_iter;
|
|
}
|
|
};
|
|
class ReverseIterator {
|
|
public:
|
|
friend class Map<Key_T, Mapped_T>;
|
|
friend class Iterator;
|
|
using underlying = Iterator;
|
|
|
|
private:
|
|
underlying store_iter;
|
|
|
|
public:
|
|
ReverseIterator() = delete;
|
|
ReverseIterator(underlying store_iter) : store_iter{store_iter} {}
|
|
ReverseIterator &operator++() {
|
|
--store_iter;
|
|
return *this;
|
|
}
|
|
ReverseIterator operator++(int) {
|
|
ReverseIterator ret = *this;
|
|
++(*this);
|
|
return ret;
|
|
}
|
|
ReverseIterator &operator--() {
|
|
++store_iter;
|
|
return *this;
|
|
}
|
|
ReverseIterator operator--(int) {
|
|
ReverseIterator ret = *this;
|
|
--(*this);
|
|
return ret;
|
|
}
|
|
ValueType &operator*() const { return this->store_iter.ref->value; }
|
|
ValueType *operator->() const { return &this->store_iter.ref->value; }
|
|
friend bool operator==(ReverseIterator const &lhs,
|
|
ReverseIterator const &rhs) {
|
|
return lhs.store_iter == rhs.store_iter;
|
|
}
|
|
friend bool operator!=(ConstIterator const &lhs, ConstIterator const &rhs) {
|
|
return lhs.store_iter != rhs.store_iter;
|
|
}
|
|
};
|
|
|
|
private:
|
|
std::optional<std::size_t> root;
|
|
std::optional<std::size_t> min;
|
|
std::optional<std::size_t> max;
|
|
std::vector<Node> nodes;
|
|
std::size_t size_diff;
|
|
|
|
std::optional<std::size_t> pred(std::size_t node) {
|
|
if (this->nodes[node].left.has_value()) {
|
|
std::size_t store = this->nodes[node].left.value();
|
|
while (this->nodes[store].right.has_value()) {
|
|
store = this->nodes[node].right.value();
|
|
}
|
|
return store;
|
|
} else {
|
|
if (!this->nodes[node].parent.has_value()) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::size_t prev_store = node;
|
|
std::size_t store = this->nodes[node].parent.value();
|
|
while (this->nodes[store].parent.has_value()) {
|
|
if (this->nodes[store].right == prev_store) {
|
|
return store;
|
|
}
|
|
prev_store = store;
|
|
store = this->nodes[store].parent.value();
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
std::optional<std::size_t> succ(std::size_t node) {
|
|
if (this->nodes[node].right.has_value()) {
|
|
std::size_t store = this->nodes[node].right.value();
|
|
while (this->nodes[store].left.has_value()) {
|
|
store = this->nodes[node].left.value();
|
|
}
|
|
return store;
|
|
} else {
|
|
if (!this->nodes[node].parent.has_value()) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::size_t prev_store = node;
|
|
std::size_t store = this->nodes[prev_store].parent.value();
|
|
while (this->nodes[store].parent.has_value()) {
|
|
if (this->nodes[store].left == prev_store) {
|
|
return store;
|
|
}
|
|
prev_store = store;
|
|
store = this->nodes[store].parent.value();
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
public:
|
|
Map()
|
|
: root{std::nullopt}, min{std::nullopt}, max{std::nullopt}, nodes{},
|
|
size_diff{0} {}
|
|
Map(const Map &rhs)
|
|
: root{rhs.root}, min{rhs.min}, max{rhs.max}, nodes{rhs.nodes},
|
|
size_diff{0} {}
|
|
Map &operator=(const Map &rhs) {
|
|
this->root = rhs.root;
|
|
this->min = rhs.min;
|
|
this->max = rhs.max;
|
|
this->nodes = rhs.nodes;
|
|
}
|
|
Map(std::initializer_list<ValueType> elems)
|
|
: root{std::nullopt}, min{std::nullopt}, max{std::nullopt}, nodes{} {
|
|
this->insert(elems.begin(), elems.end());
|
|
}
|
|
|
|
~Map() {}
|
|
|
|
size_t size() const { return this->nodes.size() - this->size_diff; }
|
|
bool empty() const { return this->size() == 0; }
|
|
|
|
Iterator begin() { return Iterator{*this, min}; }
|
|
Iterator end() { return Iterator{*this, std::nullopt, max}; }
|
|
ConstIterator begin() const { return ConstIterator{*this, this->begin()}; }
|
|
ConstIterator end() const { return ConstIterator{*this, this->end()}; }
|
|
ConstIterator cbegin() const { return this->begin(); }
|
|
ConstIterator cend() const { return this->end(); }
|
|
ReverseIterator rbegin() {
|
|
return ReverseIterator{Iterator{*this, this->max}};
|
|
}
|
|
ReverseIterator rend() {
|
|
return ReverseIterator{Iterator{*this, nullptr, min}};
|
|
}
|
|
Iterator find(const Key_T &key) {
|
|
// we need a locate slot function for insert regardless so might as well use
|
|
// it here
|
|
auto [parent, dir] = this->locate_slot(key);
|
|
if (!parent.has_value()) {
|
|
if (this->root.has_value() &&
|
|
this->nodes[this->root.value()].value.first == key) {
|
|
return Iterator{*this, root};
|
|
} else {
|
|
return this->end();
|
|
}
|
|
}
|
|
if (!this->nodes[parent.value()].c_select(dir).has_value()) {
|
|
return this->end();
|
|
}
|
|
return Iterator{*this, this->nodes[parent.value()].c_select(dir)};
|
|
}
|
|
// implicit cast to ConstIterator from Iterator
|
|
ConstIterator find(const Key_T &key) const { return this->find(key); }
|
|
|
|
Mapped_T &at(const Key_T &key) {
|
|
auto ret = this->find(key);
|
|
if (ret == this->end()) {
|
|
throw std::out_of_range{"Key not in map"};
|
|
}
|
|
return ret->second;
|
|
}
|
|
const Mapped_T &at(const Key_T &key) const {
|
|
auto ret = this->find(key);
|
|
if (ret == this->end()) {
|
|
throw std::out_of_range{"Key not in map"};
|
|
}
|
|
return ret->second;
|
|
}
|
|
Mapped_T &operator[](const Key_T &key) {
|
|
Mapped_T v;
|
|
auto insert_val = std::make_pair(key, v);
|
|
auto [iter, key_no_exist] = this->insert(insert_val);
|
|
return iter->second;
|
|
}
|
|
|
|
private:
|
|
void handle_root_rotation(std::optional<std::size_t> g,
|
|
std::optional<std::size_t> p,
|
|
std::optional<std::size_t> i, Direction dir) {
|
|
handle_root_rotation(g.has_value() ? &this->nodes[g.value()] : nullptr,
|
|
p.has_value() ? &this->nodes[p.value()] : nullptr,
|
|
i.has_value() ? &this->nodes[i.value()] : nullptr,
|
|
dir);
|
|
}
|
|
void handle_root_rotation(Node *grandparent, Node *parent, Node *inserting,
|
|
Direction dir) {
|
|
// making inner grandchild into outer grandchild
|
|
|
|
if (inserting == parent->child(!dir)) {
|
|
parent->rotate(dir);
|
|
inserting = parent;
|
|
parent = grandparent->child(dir);
|
|
}
|
|
grandparent->rotate(!dir);
|
|
|
|
parent->color = Color::Black;
|
|
grandparent->color = Color::Red;
|
|
}
|
|
using Ref_T = std::optional<std::size_t>;
|
|
// heavily referencing the wikipedia implementation for this
|
|
// https://en.wikipedia.org/wiki/Red%E2%80%93black_tree#Insertion
|
|
void insert_helper(Ref_T to_insert, Ref_T parent, Direction dir) {
|
|
// initialize the element we're inserting
|
|
this->nodes[to_insert.value()].color = Color::Red;
|
|
this->nodes[to_insert.value()].left = std::nullopt;
|
|
this->nodes[to_insert.value()].right = std::nullopt;
|
|
this->nodes[to_insert.value()].next = std::nullopt;
|
|
this->nodes[to_insert.value()].prev = std::nullopt;
|
|
this->nodes[to_insert.value()].parent = parent;
|
|
|
|
// if this is the first element to be inserted it's root
|
|
if (!this->nodes[to_insert.value()].parent.has_value()) {
|
|
this->root = to_insert;
|
|
this->nodes[to_insert.value()].color = Color::Black;
|
|
return;
|
|
}
|
|
|
|
switch (dir) {
|
|
case Direction::Left:
|
|
this->nodes[parent.value()].left = to_insert;
|
|
break;
|
|
case Direction::Right:
|
|
this->nodes[parent.value()].right = to_insert;
|
|
break;
|
|
}
|
|
|
|
do {
|
|
// don't need to keep track of these in between loops they get
|
|
// recalculated
|
|
std::optional<std::size_t> grandparent;
|
|
std::optional<std::size_t> uncle;
|
|
if (this->nodes[parent.value()].color == Color::Black) {
|
|
// black parent means invariants definitely hold
|
|
return;
|
|
}
|
|
|
|
grandparent = this->nodes[parent.value()].parent;
|
|
|
|
if (!grandparent.has_value()) {
|
|
// parent is root, just need to recolor it to black
|
|
this->nodes[parent.value()].color = Color::Black;
|
|
return;
|
|
}
|
|
|
|
Direction parent_direction;
|
|
if (this->nodes[grandparent.value()].left == parent) {
|
|
parent_direction = Direction::Left;
|
|
uncle = this->nodes[grandparent.value()].right;
|
|
} else {
|
|
parent_direction = Direction::Right;
|
|
uncle = this->nodes[grandparent.value()].left;
|
|
}
|
|
|
|
if (!uncle.has_value() ||
|
|
this->nodes[uncle.value()].color == Color::Black) {
|
|
if (to_insert == this->nodes[parent.value()].c_select(!dir)) {
|
|
// case 5
|
|
this->nodes[parent.value()].rotate(dir);
|
|
to_insert = parent;
|
|
parent = this->nodes[grandparent.value()].c_select(dir);
|
|
}
|
|
// case 6
|
|
this->handle_root_rotation(grandparent, parent, to_insert,
|
|
parent_direction);
|
|
return;
|
|
}
|
|
|
|
// now we know parent and uncle are both red so red-black coloring can be
|
|
// pushed down from grandparent
|
|
this->nodes[parent.value()].color = Color::Black;
|
|
this->nodes[uncle.value()].color = Color::Black;
|
|
this->nodes[grandparent.value()].color = Color::Red;
|
|
|
|
to_insert = grandparent;
|
|
parent = this->nodes[to_insert.value()].parent;
|
|
} while (parent.has_value());
|
|
|
|
// case 3: current node is red root so we're done
|
|
}
|
|
// returns nullptr iff map is empty
|
|
std::pair<std::optional<std::size_t>, Direction>
|
|
locate_slot(const Key_T &key) {
|
|
using Ref_T = std::optional<std::size_t>;
|
|
Ref_T current = this->root;
|
|
Ref_T parent = std::nullopt;
|
|
Direction dir;
|
|
while (current.has_value() &&
|
|
this->nodes[current.value()].value.first != key) {
|
|
parent = current;
|
|
if (key < this->nodes[current.value()].value.first) {
|
|
dir = Direction::Left;
|
|
current = this->nodes[current.value()].left;
|
|
} else {
|
|
dir = Direction::Right;
|
|
current = this->nodes[current.value()].right;
|
|
}
|
|
}
|
|
return std::make_pair(parent, dir);
|
|
}
|
|
|
|
public:
|
|
// If the key does not already exist in the map, it returns an iterator
|
|
// pointing to the new element, and true. If the key already exists, no
|
|
// insertion is performed nor is the mapped object changed, and it returns
|
|
// an iterator pointing to the element with the same key, and false.
|
|
std::pair<Iterator, bool> insert(const ValueType &val) {
|
|
auto [parent, dir] = locate_slot(val.first);
|
|
bool ret = !parent.has_value() ||
|
|
!this->nodes[parent.value()].c_select(dir).has_value();
|
|
if (!ret) {
|
|
return std::make_pair(
|
|
Iterator{*this, this->nodes[parent.value()].c_select(dir)}, ret);
|
|
}
|
|
Node to_insert{*this};
|
|
to_insert.value = val;
|
|
this->nodes.push_back(std::move(to_insert));
|
|
// this->nodes.back().self = (--this->nodes.end());
|
|
insert_helper(nodes.size() - 1, parent, dir);
|
|
|
|
if (min == std::nullopt ||
|
|
val.first < this->nodes[min.value()].value.first) {
|
|
min = nodes.size() - 1;
|
|
}
|
|
if (max == std::nullopt ||
|
|
val.first > this->nodes[max.value()].value.first) {
|
|
max = nodes.size() - 1;
|
|
}
|
|
Ref_T successor = this->succ(this->nodes.size() - 1);
|
|
Ref_T predessor = this->pred(this->nodes.size() - 1);
|
|
if (successor.has_value()) {
|
|
this->nodes[successor.value()].prev = this->nodes.size() - 1;
|
|
}
|
|
this->nodes[this->nodes.size() - 1].next = successor;
|
|
if (predessor.has_value()) {
|
|
this->nodes[predessor.value()].next = this->nodes.size() - 1;
|
|
}
|
|
this->nodes[this->nodes.size() - 1].prev = successor;
|
|
return std::make_pair(Iterator(*this, nodes.size() - 1), ret);
|
|
}
|
|
template <typename IT_T> void insert(IT_T range_beg, IT_T range_end) {
|
|
std::for_each(range_beg, range_end,
|
|
[&](ValueType &val) { this->insert(val); });
|
|
}
|
|
|
|
private:
|
|
void case5(Node *parent, Node *sibling, Node *close_nephew,
|
|
Node *distant_nephew, Direction dir) {
|
|
sibling->rotate(!dir);
|
|
sibling->color = Color::Red;
|
|
close_nephew->color = Color::Black;
|
|
distant_nephew = sibling;
|
|
sibling = close_nephew;
|
|
case6(parent, sibling, distant_nephew, dir);
|
|
}
|
|
void case6(Node *parent, Node *sibling, Node *distant_nephew, Direction dir) {
|
|
parent->rotate(dir);
|
|
sibling->color = parent->color;
|
|
parent->color = Color::Black;
|
|
distant_nephew->color = Color::Black;
|
|
}
|
|
// heavily referring to
|
|
// https://en.wikipedia.org/wiki/Red%E2%80%93black_tree#Removal_of_a_black_non-root_leaf
|
|
void complex_erase(Iterator pos) {
|
|
|
|
Node *to_delete = &this->nodes[pos.ref.value()];
|
|
Node *parent = to_delete->par();
|
|
assert(parent != nullptr);
|
|
|
|
Direction dir =
|
|
parent->r() == to_delete ? Direction::Right : Direction::Left;
|
|
|
|
Node *sibling;
|
|
;
|
|
Node *close_nephew;
|
|
Node *distant_nephew;
|
|
|
|
parent->c_trans(dir, nullptr);
|
|
|
|
do {
|
|
dir = parent->r() == to_delete ? Direction::Right : Direction::Left;
|
|
|
|
sibling = parent->child(!dir);
|
|
distant_nephew = sibling->child(!dir);
|
|
close_nephew = sibling->child(dir);
|
|
|
|
if (sibling->color == Color::Red) {
|
|
// case 3
|
|
parent->rotate(dir);
|
|
parent->color = Color::Red;
|
|
sibling->color = Color::Black;
|
|
sibling = close_nephew;
|
|
// redundant?
|
|
distant_nephew = sibling->child(!dir);
|
|
if (distant_nephew != nullptr && distant_nephew->color == Color::Red) {
|
|
case6(parent, sibling, distant_nephew, dir);
|
|
return;
|
|
}
|
|
close_nephew = sibling->child(dir);
|
|
if (close_nephew != nullptr && close_nephew->color == Color::Red) {
|
|
case5(parent, sibling, close_nephew, distant_nephew, dir);
|
|
return;
|
|
}
|
|
sibling->color = Color::Red;
|
|
parent->color = Color::Black;
|
|
return;
|
|
}
|
|
|
|
if (distant_nephew != nullptr && distant_nephew->color == Color::Red) {
|
|
case6(parent, sibling, distant_nephew, dir);
|
|
return;
|
|
}
|
|
|
|
if (close_nephew != nullptr && close_nephew->color == Color::Red) {
|
|
case5(parent, sibling, close_nephew, distant_nephew, dir);
|
|
return;
|
|
}
|
|
|
|
if (parent->color == Color::Red) {
|
|
// case 4
|
|
sibling->color = Color::Red;
|
|
parent->color = Color::Black;
|
|
return;
|
|
}
|
|
|
|
// case 2
|
|
sibling->color = Color::Red;
|
|
to_delete = parent;
|
|
parent = to_delete->par();
|
|
} while (parent != nullptr);
|
|
}
|
|
|
|
public:
|
|
void erase(Iterator pos) {
|
|
this->size_diff++;
|
|
// simple cases
|
|
Node *ref = &this->nodes[pos.ref.value()];
|
|
if (ref ==
|
|
(this->min.has_value() ? &this->nodes[this->min.value()] : nullptr)) {
|
|
this->min = ref->next;
|
|
}
|
|
if (ref ==
|
|
(this->max.has_value() ? &this->nodes[this->max.value()] : nullptr)) {
|
|
this->max = ref->prev;
|
|
}
|
|
// 2 children
|
|
if (ref->l() != nullptr && ref->r() != nullptr) {
|
|
Ref_T next = ref->next;
|
|
*ref = this->nodes[next.value()];
|
|
this->erase(Iterator{*this, next});
|
|
}
|
|
// single child which is left
|
|
else if (ref->l() != nullptr && ref->r() == nullptr) {
|
|
if (ref->par()->l() == ref) {
|
|
ref->par()->set_l(ref->l());
|
|
} else {
|
|
ref->par()->set_r(ref->l());
|
|
}
|
|
if (ref->color == Color::Black) {
|
|
ref->l()->color = Color::Black;
|
|
}
|
|
}
|
|
// single child which is right
|
|
else if (ref->l() == nullptr && ref->r() != nullptr) {
|
|
if (ref->par()->l() == ref) {
|
|
ref->par()->set_l(ref->r());
|
|
} else {
|
|
ref->par()->set_r(ref->r());
|
|
}
|
|
if (ref->color == Color::Black) {
|
|
ref->r()->color = Color::Black;
|
|
}
|
|
}
|
|
// no children and root
|
|
else if (this->root == pos.ref && ref->l() == nullptr &&
|
|
ref->r() == nullptr) {
|
|
this->root = std::nullopt;
|
|
}
|
|
// no children and red
|
|
else if (ref->color == Color::Red && ref->l() == nullptr &&
|
|
ref->r() == nullptr) {
|
|
if (ref->parent.has_value()) {
|
|
if (this->nodes[ref->parent.value()].right == pos.ref.value()) {
|
|
this->nodes[ref->parent.value()].right = std::nullopt;
|
|
} else {
|
|
this->nodes[ref->parent.value()].left = std::nullopt;
|
|
}
|
|
}
|
|
}
|
|
// complicated case of black node with no kids
|
|
else {
|
|
this->complex_erase(pos);
|
|
}
|
|
if (ref->next.has_value()) {
|
|
this->nodes[ref->next.value()].prev = this->pred(ref->next.value());
|
|
}
|
|
if (ref->prev.has_value()) {
|
|
this->nodes[ref->next.value()].next = this->succ(ref->next.value());
|
|
}
|
|
}
|
|
void erase(const Key_T &key) { this->erase(this->find(key)); }
|
|
void clear() {
|
|
this->root = std::nullopt;
|
|
this->nodes.clear();
|
|
}
|
|
friend bool operator==(const Map &lhs, const Map &rhs) {
|
|
if (lhs.nodes.size() != rhs.nodes.size()) {
|
|
return false;
|
|
}
|
|
auto liter = lhs.cbegin();
|
|
auto riter = rhs.cbegin();
|
|
// both must be the same length so this is fine
|
|
while (liter != lhs.cend()) {
|
|
if (*liter != *riter) {
|
|
return false;
|
|
}
|
|
liter++;
|
|
riter++;
|
|
}
|
|
return true;
|
|
}
|
|
friend bool operator!=(const Map &lhs, const Map &rhs) {
|
|
return !(lhs == rhs);
|
|
}
|
|
friend bool operator<(const Map &lhs, const Map &rhs) {
|
|
auto l_iter = lhs.cbegin();
|
|
auto r_iter = rhs.cbegin();
|
|
for (; l_iter != lhs.cend() && r_iter != rhs.cend(); l_iter++, r_iter++) {
|
|
if (*l_iter < *r_iter) {
|
|
return true;
|
|
}
|
|
}
|
|
return lhs.size() < rhs.size();
|
|
}
|
|
};
|
|
} // namespace cs440
|