643 lines
18 KiB
C++
643 lines
18 KiB
C++
// commenting everything out when I commit so all commits my code technically
|
|
// compiles
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <initializer_list>
|
|
#include <iterator>
|
|
#include <optional>
|
|
#include <stdexcept>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
// everything is super interconnected so some forward declarations are needed at
|
|
// various points
|
|
namespace cs440 {
|
|
|
|
template <typename Key_T, typename Mapped_T> class Map;
|
|
|
|
namespace {
|
|
enum class Color { Red, Black };
|
|
enum class Direction { Left, Right };
|
|
Direction operator!(Direction dir) {
|
|
switch (dir) {
|
|
case Direction::Left:
|
|
return Direction::Right;
|
|
case Direction::Right:
|
|
return Direction::Left;
|
|
default:
|
|
// unreachable the only directions are left and right
|
|
assert(false);
|
|
}
|
|
}
|
|
template <typename Key_T, typename Mapped_T> struct BookKeeping {
|
|
using Self = BookKeeping<Key_T, Mapped_T>;
|
|
using ValueType = std::pair<const Key_T, Mapped_T>;
|
|
friend class Map<Key_T, Mapped_T>;
|
|
Map<Key_T, Mapped_T> &container;
|
|
ValueType value;
|
|
Color color;
|
|
// nullptr indicates empty
|
|
Self *parent;
|
|
Self *left;
|
|
Self *right;
|
|
Self *prev;
|
|
Self *next;
|
|
// reference to a pointer because the alternatives were worse
|
|
inline Self *&child(Direction dir) {
|
|
switch (dir) {
|
|
case Direction::Left:
|
|
return left;
|
|
break;
|
|
case Direction::Right:
|
|
return right;
|
|
break;
|
|
}
|
|
}
|
|
// this is root/P for this method
|
|
// copying from wikipedia RotateDirRoot with translation into my own idioms
|
|
// https://en.wikipedia.org/wiki/Red%E2%80%93black_tree#Operations
|
|
inline void rotate(Direction dir) {
|
|
// wikipedia version uses alphabet soup, might fix later
|
|
Self *P = this;
|
|
auto &T = container;
|
|
Self *G = P->parent;
|
|
Self *S = P->child(!dir);
|
|
Self *C;
|
|
|
|
// this method shouldn't be called in cases where this assert will trip
|
|
assert(S != nullptr);
|
|
|
|
//
|
|
C = S->child(dir);
|
|
P->child(!dir) = C;
|
|
|
|
if (C != nullptr) {
|
|
C->parent = P;
|
|
}
|
|
S->child(dir) = P;
|
|
P->parent = S;
|
|
S->parent = G;
|
|
if (G != nullptr) {
|
|
if (P == G->right) {
|
|
G->right = S;
|
|
} else {
|
|
G->left = S;
|
|
}
|
|
} else {
|
|
T->root = S;
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
// https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
|
|
template <typename Key_T, typename Mapped_T> class Map {
|
|
private:
|
|
using ValueType = std::pair<const Key_T, Mapped_T>;
|
|
using Node = BookKeeping<Key_T, Mapped_T>;
|
|
using Map_T = Map<Key_T, Mapped_T>;
|
|
|
|
public:
|
|
class Iterator;
|
|
class ConstIterator;
|
|
class ReverseIterator;
|
|
|
|
friend class Iterator;
|
|
friend class ConstIterator;
|
|
friend class ReverseIterator;
|
|
friend Node;
|
|
class Iterator {
|
|
friend Map_T;
|
|
friend Node;
|
|
|
|
private:
|
|
// pointer needed so we can replace as needed
|
|
Node *ref;
|
|
Node *escape;
|
|
Iterator(Node *ref, Node *escape = nullptr) : ref{ref}, escape{escape} {}
|
|
|
|
public:
|
|
Iterator() = delete;
|
|
Iterator &operator++() {
|
|
if (ref == nullptr) {
|
|
ref = escape;
|
|
return *this;
|
|
}
|
|
if (ref->next == nullptr) {
|
|
escape = ref;
|
|
}
|
|
ref = ref->next;
|
|
return *this;
|
|
}
|
|
Iterator operator++(int) {
|
|
Iterator tmp = *this;
|
|
++(*this);
|
|
return tmp;
|
|
}
|
|
Iterator &operator--() {
|
|
if (ref == nullptr) {
|
|
ref = escape;
|
|
return *this;
|
|
}
|
|
if (ref->prev == nullptr) {
|
|
escape = ref;
|
|
}
|
|
ref = ref->prev;
|
|
return *this;
|
|
}
|
|
Iterator operator--(int) {
|
|
Iterator tmp = *this;
|
|
--(*this);
|
|
return tmp;
|
|
}
|
|
ValueType &operator*() const { return this->ref->value; }
|
|
ValueType *operator->() const { return &this->ref->value; }
|
|
friend bool operator==(Iterator const &lhs, Iterator const &rhs) {
|
|
return lhs.ref == rhs.ref;
|
|
}
|
|
friend bool operator!=(Iterator const &lhs, Iterator const &rhs) {
|
|
return lhs.ref != rhs.ref;
|
|
}
|
|
friend bool operator==(ConstIterator const &lhs, Iterator const &rhs) {
|
|
return lhs.store_iter.ref == rhs.ref;
|
|
}
|
|
friend bool operator!=(ConstIterator const &lhs, Iterator const &rhs) {
|
|
return lhs.store_iter.ref != rhs.ref;
|
|
}
|
|
friend bool operator==(Iterator const &lhs, ConstIterator const &rhs) {
|
|
return lhs.ref == rhs.store_iter.ref;
|
|
}
|
|
friend bool operator!=(Iterator const &lhs, ConstIterator const &rhs) {
|
|
return lhs.ref != rhs.store_iter.ref;
|
|
}
|
|
};
|
|
class ConstIterator {
|
|
public:
|
|
friend class Map<Key_T, Mapped_T>;
|
|
friend class Iterator;
|
|
using underlying = Iterator;
|
|
|
|
private:
|
|
underlying store_iter;
|
|
ConstIterator(underlying iter) : store_iter{iter} {}
|
|
|
|
public:
|
|
ConstIterator() = delete;
|
|
friend bool operator==(ConstIterator const &lhs, ConstIterator const &rhs) {
|
|
return lhs.store_iter == rhs.store_iter;
|
|
}
|
|
ConstIterator &operator++() {
|
|
++this->store_iter;
|
|
return *this;
|
|
}
|
|
ConstIterator operator++(int) {
|
|
ConstIterator tmp = *this;
|
|
this->store_iter++;
|
|
return tmp;
|
|
}
|
|
ConstIterator &operator--() {
|
|
--this->store_iter;
|
|
return *this;
|
|
}
|
|
ConstIterator operator--(int) {
|
|
ConstIterator tmp = *this;
|
|
this->store_iter--;
|
|
return tmp;
|
|
}
|
|
const ValueType &operator*() const { return *this->store_iter; }
|
|
const ValueType *operator->() const {
|
|
return this->store_iter.operator->();
|
|
}
|
|
friend bool operator!=(ConstIterator const &lhs, ConstIterator const &rhs) {
|
|
return lhs.store_iter != rhs.store_iter;
|
|
}
|
|
};
|
|
class ReverseIterator {
|
|
public:
|
|
friend class Map<Key_T, Mapped_T>;
|
|
friend class Iterator;
|
|
using underlying = Iterator;
|
|
|
|
private:
|
|
underlying store_iter;
|
|
|
|
public:
|
|
ReverseIterator() = delete;
|
|
ReverseIterator(underlying store_iter) : store_iter{store_iter} {}
|
|
ReverseIterator &operator++() {
|
|
--store_iter;
|
|
return *this;
|
|
}
|
|
ReverseIterator operator++(int) {
|
|
ReverseIterator ret = *this;
|
|
++(*this);
|
|
return ret;
|
|
}
|
|
ReverseIterator &operator--() {
|
|
++store_iter;
|
|
return *this;
|
|
}
|
|
ReverseIterator operator--(int) {
|
|
ReverseIterator ret = *this;
|
|
--(*this);
|
|
return ret;
|
|
}
|
|
ValueType &operator*() const { return this->store_iter.ref->value; }
|
|
ValueType *operator->() const { return &this->store_iter.ref->value; }
|
|
friend bool operator==(ReverseIterator const &lhs,
|
|
ReverseIterator const &rhs) {
|
|
return lhs.store_iter == rhs.store_iter;
|
|
}
|
|
friend bool operator!=(ConstIterator const &lhs, ConstIterator const &rhs) {
|
|
return lhs.store_iter != rhs.store_iter;
|
|
}
|
|
};
|
|
|
|
private:
|
|
Node *root;
|
|
Node *min;
|
|
Node *max;
|
|
std::vector<Node> nodes;
|
|
|
|
public:
|
|
Map() : root{nullptr}, min{nullptr}, max{nullptr}, nodes{} {}
|
|
Map(const Map &rhs)
|
|
: root{rhs.root}, min{nullptr}, max{nullptr}, nodes{rhs.nodes} {}
|
|
Map &operator=(const Map &rhs) {
|
|
this->root = rhs.root;
|
|
this->min = rhs.min;
|
|
this->max = rhs.max;
|
|
this->nodes = rhs.nodes;
|
|
}
|
|
Map(std::initializer_list<ValueType> elems) : root{nullptr}, nodes{} {
|
|
this->insert(elems.begin(), elems.end());
|
|
}
|
|
|
|
~Map() {}
|
|
|
|
size_t size() const {
|
|
root = nullptr;
|
|
return this->nodes.size();
|
|
}
|
|
bool empty() const { return this->size() == 0; }
|
|
Iterator begin() { return Iterator{min}; }
|
|
Iterator end() { return Iterator{nullptr, max}; }
|
|
ConstIterator begin() const { return ConstIterator{this->begin()}; }
|
|
ConstIterator end() const { return ConstIterator{this->end()}; }
|
|
ConstIterator cbegin() const { return this->begin(); }
|
|
ConstIterator cend() const { return this->end(); }
|
|
ReverseIterator rbegin() { return ReverseIterator{Iterator{this->max}}; }
|
|
ReverseIterator rend() { return ReverseIterator{Iterator{nullptr, min}}; }
|
|
Iterator find(const Key_T &key) {
|
|
// we need a locate slot function for insert regardless so might as well use
|
|
// it here
|
|
auto [parent, dir] = this->locate_slot(key);
|
|
if (parent == nullptr) {
|
|
return this->end();
|
|
}
|
|
if (parent->child(dir) == nullptr) {
|
|
return this->end();
|
|
}
|
|
return Iterator{parent->child(dir)};
|
|
}
|
|
// implicit cast to ConstIterator from Iterator
|
|
ConstIterator find(const Key_T &key) const { return this->find(key); }
|
|
|
|
Mapped_T &at(const Key_T &key) { return (this->find(key))->second; }
|
|
const Mapped_T &at(const Key_T &key) const { return this->at(key); }
|
|
Mapped_T &operator[](const Key_T &key) { return this->at(key); }
|
|
|
|
private:
|
|
void handle_root_rotation(Node *grandparent, Node *parent, Node *inserting,
|
|
Direction dir) {
|
|
// making inner grandchild into outer grandchild
|
|
if (inserting == parent->child(!dir)) {
|
|
parent->rotate(dir);
|
|
inserting = parent;
|
|
parent = grandparent->child(dir);
|
|
}
|
|
// RotateDirRoot(T,G,1-dir);
|
|
Node *gr_grandparent = grandparent->parent;
|
|
Node *sibling = grandparent->child(!dir);
|
|
assert(sibling != nullptr);
|
|
Node *child = sibling->child(dir);
|
|
grandparent->child(!dir) = child;
|
|
sibling->child(dir) = grandparent;
|
|
grandparent->parent = sibling;
|
|
sibling->parent = gr_grandparent;
|
|
if (gr_grandparent != nullptr) {
|
|
Direction grandparent_direction;
|
|
if (gr_grandparent->left == grandparent) {
|
|
grandparent_direction = Direction::Left;
|
|
} else {
|
|
grandparent_direction = Direction::Right;
|
|
}
|
|
gr_grandparent->child(grandparent_direction) = sibling;
|
|
} else {
|
|
this->root = sibling;
|
|
}
|
|
|
|
parent->color = Color::Black;
|
|
grandparent->color = Color::Red;
|
|
}
|
|
// heavily referencing the wikipedia implementation for this
|
|
// https://en.wikipedia.org/wiki/Red%E2%80%93black_tree#Insertion
|
|
void insert_helper(Node *to_insert, Node *parent, Direction dir) {
|
|
// initialize the element we're inserting
|
|
to_insert->color = Color::Red;
|
|
to_insert->left = nullptr;
|
|
to_insert->right = nullptr;
|
|
to_insert->parent = parent;
|
|
switch (dir) {
|
|
case Direction::Left:
|
|
to_insert->next = parent;
|
|
to_insert->prev = parent->prev;
|
|
parent->prev = to_insert;
|
|
break;
|
|
case Direction::Right:
|
|
to_insert->prev = parent;
|
|
to_insert->next = parent->next;
|
|
parent->next = to_insert;
|
|
break;
|
|
}
|
|
|
|
// if this is the first element to be inserted it's root
|
|
if (to_insert->parent == nullptr) {
|
|
this->root = to_insert;
|
|
return;
|
|
}
|
|
|
|
switch (dir) {
|
|
case Direction::Left:
|
|
parent->left = to_insert;
|
|
break;
|
|
case Direction::Right:
|
|
parent->right = to_insert;
|
|
break;
|
|
}
|
|
|
|
do {
|
|
// don't need to keep track of these in between loops they get
|
|
// recalculated
|
|
Node *grandparent;
|
|
Node *uncle;
|
|
if (parent->color == Color::Black) {
|
|
// black parent means invariants definitely hold
|
|
return;
|
|
}
|
|
|
|
grandparent = parent->parent;
|
|
|
|
if (grandparent == nullptr) {
|
|
// parent is root, just need to recolor it to black
|
|
parent->color = Color::Black;
|
|
return;
|
|
}
|
|
|
|
Direction parent_direction;
|
|
if (grandparent->left == parent) {
|
|
parent_direction = Direction::Left;
|
|
uncle = grandparent->right;
|
|
} else {
|
|
parent_direction = Direction::Right;
|
|
uncle = grandparent->left;
|
|
}
|
|
|
|
if (uncle == nullptr || uncle->color == Color::Black) {
|
|
// case 5 and 6
|
|
this->handle_root_rotation(grandparent, parent, to_insert,
|
|
parent_direction);
|
|
return;
|
|
}
|
|
|
|
// now we know parent and uncle are both red so red-black coloring can be
|
|
// pushed down from grandparent
|
|
parent->color = Color::Black;
|
|
uncle->color = Color::Black;
|
|
grandparent->color = Color::Red;
|
|
|
|
to_insert = grandparent;
|
|
parent = to_insert->parent;
|
|
} while (parent != nullptr);
|
|
|
|
// case 3: current node is red root so we're done
|
|
}
|
|
// returns nullptr iff map is empty
|
|
std::pair<Node *, Direction> locate_slot(const Key_T &key) {
|
|
Node *current = this->root;
|
|
Node *parent = nullptr;
|
|
Direction dir;
|
|
while (current != nullptr && current->value.first != key) {
|
|
parent = current;
|
|
if (current->value.fist < key) {
|
|
dir = Direction::Left;
|
|
current = current->left;
|
|
} else {
|
|
dir = Direction::Right;
|
|
current = current->right;
|
|
}
|
|
}
|
|
return std::make_pair(parent, dir);
|
|
}
|
|
|
|
public:
|
|
// If the key does not already exist in the map, it returns an iterator
|
|
// pointing to the new element, and true. If the key already exists, no
|
|
// insertion is performed nor is the mapped object changed, and it returns
|
|
// an iterator pointing to the element with the same key, and false.
|
|
std::pair<Iterator, bool> insert(const ValueType &val) {
|
|
auto [parent, dir] = locate_slot(val.first);
|
|
bool ret = parent->child(dir) == nullptr;
|
|
if (!ret) {
|
|
return std::make_pair(Iterator{parent->child(dir)}, ret);
|
|
}
|
|
Node to_insert;
|
|
to_insert.value = val;
|
|
this->nodes.push_back(std::move(to_insert));
|
|
insert_helper(&nodes.back(), parent, dir);
|
|
|
|
if (min == nullptr || val.first < min->value.first) {
|
|
min = &nodes.back();
|
|
}
|
|
if (max == nullptr || val.first > max->value.first) {
|
|
max = &nodes.back();
|
|
}
|
|
|
|
return std::make_pair(Iterator{&nodes.back()}, ret);
|
|
}
|
|
template <typename IT_T> void insert(IT_T range_beg, IT_T range_end) {
|
|
std::for_each(range_beg, range_end,
|
|
[&](ValueType &val) { this->insert(val); });
|
|
}
|
|
|
|
private:
|
|
void case5(Node *parent, Node *sibling, Node *close_nephew,
|
|
Node *distant_nephew, Direction dir) {
|
|
sibling->rotate(!dir);
|
|
sibling->color = Color::Red;
|
|
close_nephew->color = Color::Black;
|
|
distant_nephew = sibling;
|
|
sibling = close_nephew;
|
|
case6(parent, sibling, distant_nephew, dir);
|
|
}
|
|
void case6(Node *parent, Node *sibling, Node *distant_nephew, Direction dir) {
|
|
parent->rotate(dir);
|
|
sibling->color = parent->color;
|
|
parent->color = Color::Black;
|
|
distant_nephew->color = Color::Black;
|
|
}
|
|
// heavily referring to
|
|
// https://en.wikipedia.org/wiki/Red%E2%80%93black_tree#Removal_of_a_black_non-root_leaf
|
|
void complex_erase(Iterator pos) {
|
|
|
|
Node *to_delete = pos.ref;
|
|
Node *parent = to_delete->parent;
|
|
assert(parent != nullptr);
|
|
|
|
Direction dir =
|
|
parent->right == to_delete ? Direction::Right : Direction::Left;
|
|
|
|
Node *sibling;
|
|
;
|
|
Node *close_nephew;
|
|
Node *distant_nephew;
|
|
|
|
parent->child(dir) = nullptr;
|
|
|
|
do {
|
|
dir = parent->right == to_delete ? Direction::Right : Direction::Left;
|
|
|
|
sibling = parent->child(!dir);
|
|
distant_nephew = sibling->child(!dir);
|
|
close_nephew = sibling->child(dir);
|
|
|
|
if (sibling->color == Color::Red) {
|
|
// case 3
|
|
parent->rotate(dir);
|
|
parent->color = Color::Red;
|
|
sibling->color = Color::Black;
|
|
sibling = close_nephew;
|
|
// redundant?
|
|
distant_nephew = sibling->child(!dir);
|
|
if (distant_nephew != nullptr && distant_nephew->color == Color::Red) {
|
|
case6(parent, sibling, distant_nephew, dir);
|
|
return;
|
|
}
|
|
close_nephew = sibling->child(dir);
|
|
if (close_nephew != nullptr && close_nephew->color == Color::Red) {
|
|
case5(parent, sibling, close_nephew, distant_nephew, dir);
|
|
return;
|
|
}
|
|
sibling->color = Color::Red;
|
|
parent->color = Color::Black;
|
|
return;
|
|
}
|
|
|
|
if (distant_nephew != nullptr && distant_nephew->color == Color::Red) {
|
|
case6(parent, sibling, distant_nephew, dir);
|
|
return;
|
|
}
|
|
|
|
if (close_nephew != nullptr && close_nephew->color == Color::Red) {
|
|
case5(parent, sibling, close_nephew, distant_nephew, dir);
|
|
return;
|
|
}
|
|
|
|
if (parent->color == Color::Red) {
|
|
// case 4
|
|
sibling->color = Color::Red;
|
|
parent->color = Color::Black;
|
|
return;
|
|
}
|
|
|
|
// case 2
|
|
sibling->color = Color::Red;
|
|
to_delete = parent;
|
|
parent = to_delete->parent;
|
|
} while (parent != nullptr);
|
|
}
|
|
|
|
public:
|
|
// TODO: check that the way of reconnecting next and prev works
|
|
void erase(Iterator pos) {
|
|
// simple cases
|
|
Node *ref = pos.ref;
|
|
// 2 children
|
|
if (ref->left != nullptr && ref->right != nullptr) {
|
|
Node *next = ref->next;
|
|
Node *prev = ref->prev;
|
|
*ref = *next;
|
|
prev->next = next;
|
|
next->prev = prev;
|
|
this->erase(Iterator{next});
|
|
}
|
|
// single child which is left
|
|
else if (ref->left != nullptr && ref->right == nullptr) {
|
|
Node *next = ref->next;
|
|
Node *prev = ref->prev;
|
|
*ref = *ref->left;
|
|
prev->next = next;
|
|
next->prev = prev;
|
|
}
|
|
// single child which is right
|
|
else if (ref->left == nullptr && ref->right != nullptr) {
|
|
Node *next = ref->next;
|
|
Node *prev = ref->prev;
|
|
*ref = *ref->right;
|
|
prev->next = next;
|
|
next->prev = prev;
|
|
}
|
|
// no children and root
|
|
else if (ref->left == nullptr && ref->right == nullptr) {
|
|
this->root = nullptr;
|
|
this->nodes.erase(ref->value);
|
|
}
|
|
// no children and red
|
|
else if (ref->left == nodes.end() && ref->right == nodes.end()) {
|
|
Node *next = ref->next;
|
|
Node *prev = ref->prev;
|
|
prev->next = next;
|
|
next->prev = prev;
|
|
this->nodes.erase(ref->value);
|
|
}
|
|
// complicated case of black node with no kids
|
|
else {
|
|
this->complex_erase(pos);
|
|
}
|
|
}
|
|
void erase(const Key_T &key) { this->erase(this->find(key)); }
|
|
void clear() {
|
|
this->root = nullptr;
|
|
this->nodes.clear();
|
|
}
|
|
friend bool operator==(const Map &lhs, const Map &rhs) {
|
|
if (lhs.nodes.size() != rhs.nodes.size()) {
|
|
return false;
|
|
}
|
|
auto liter = lhs.cbegin();
|
|
auto riter = rhs.cbegin();
|
|
// both must be the same length so this is fine
|
|
while (liter != lhs.cend()) {
|
|
if (*liter != *riter) {
|
|
return false;
|
|
}
|
|
liter++;
|
|
riter++;
|
|
}
|
|
return true;
|
|
}
|
|
friend bool operator!=(const Map &lhs, const Map &rhs) {
|
|
return !(lhs == rhs);
|
|
}
|
|
friend bool operator<(const Map &lhs, const Map &rhs) {
|
|
auto l_iter = lhs.cbegin();
|
|
auto r_iter = rhs.cbegin();
|
|
for (; l_iter != lhs.cend() && r_iter != rhs.cend(); l_iter++, r_iter++) {
|
|
if (*l_iter < *r_iter) {
|
|
return true;
|
|
}
|
|
}
|
|
return lhs.size() < rhs.size();
|
|
}
|
|
};
|
|
} // namespace cs440
|